对数函数换底公式的推论及应用(对数函数换底公式)
导读 换底公式 log(a)(N)=log(b)(N) / log(b)(a) 推导如下: N = a^[log(a)(N)] a = b^[log(b)(a)] 综合两式可得 N = {b^[log(b...
换底公式 log(a)(N)=log(b)(N) / log(b)(a) 推导如下: N = a^[log(a)(N)] a = b^[log(b)(a)] 综合两式可得 N = {b^[log(b)(a)]}^[log(a)(N)] = b^{[log(a)(N)]*[log(b)(a)]} 又因为N=b^[log(b)(N)] 所以 b^[log(b)(N)] = b^{[log(a)(N)]*[log(b)(a)]} 所以 log(b)(N) = [log(a)(N)]*[log(b)(a)] 所以log(a)(N)=log(b)(N) / log(b)(a)。
免责声明:本文由用户上传,如有侵权请联系删除!